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An ab initio analysis of laser driven, few-electron plasmon dynamics in a finite lateral quantum dot is
performed. The results are analyzed by a comparison to a Drude model based on the center-of-mass motion of
the plasmon. We find that decay and energy absorption during the plasmon-surface interaction do not depend
on electron correlation. This suggests that the Kohn theorem—plasmon dynamics in infinite parabolic quantum
dots does not depend on electron correlation—is extendable to finite quantum dots.
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I. INTRODUCTION

Many-body physics in infinite systems is relatively well
understood. Much progress has been made lately in the
analysis and understanding of finite many-body quantum
systems via approaches such as configuration interaction,1–3

Monte Carlo,4,5 and unrestricted Hartree-Fock.6–8 However,
most of these static theoretical methods work well only for
the calculation of the ground and first few excited states. In
terms of dynamics, this means that only weakly perturbed
systems can be calculated.9 Due to the lack of theoretical
tools not much is known about strongly driven finite many-
particle quantum systems.

This paper presents a first step toward closing this gap.
The recent development of the multiconfiguration time-
dependent Hartree-Fock �MCTDHF� method10–13 allows the
investigation of the dynamics of strongly driven few-body
quantum systems, fully accounting for electron correlation.
We focus on the investigation of the dynamics in a reso-
nantly driven few-electron, lateral parabolic quantum dot
�QD�. More specifically, we solve the Schrödinger equation
for four electrons with two spatial dimensions per electron
�4�2D� for a broad range of QD sizes and therewith elec-
tron correlations, covering the phase transition from an elec-
tron liquid14 to a Wigner crystal.15

In an infinite parabolic QD, with confining frequency �0,
radiation only couples to the center of mass of the multielec-
tron system,16,17 which moves collectively as a plasmon with
frequency �p=�0 �Kohn mode�. In the presence of a surface,
ionization and dissipation and dephasing of the plasmon dy-
namics take place. The goal of our investigation is to under-
stand and characterize these surface effects as a function of
electron correlation and electric field strength. The relevance
of our investigation is not confined to QDs, but relates to all
finite quantum systems with collective plasmonlike response,
such as clusters nanoparticles, large molecules, and harmonic
traps. Our proof-of-principle ab initio calculation of this
ubiquitous process presents the first main result of this paper.

A comparison between a Drude model18 and ab initio re-
sults is used to analyze the plasmon dynamics in a finite QD.
This comparison reveals the second main result of our work.
The Kohn theorem states that the plasmon motion in an in-
finite QD does not depend on electron correlation. We find
that energy absorption and dissipation of the plasmon do not

depend on electron correlation either. This numerical evi-
dence suggests that the Kohn theorem is extendable from
infinite to finite QDs. The corroboration of our result for
larger numbers of electrons requires further tuning and opti-
mization of MCTDHF, which is subject to future research.

Finally, the Drude model works well even in the nonper-
turbative limit of plasmon-surface interaction, where sub-
stantial ionization takes place. Ionization sets a limit to the
ultimate field strengths the QD can be exposed to. A simple
picture for the ionization process is developed, from which
ionization saturation field strengths can be determined.

II. THEORETICAL APPROACH

The few-electron dynamics in the QD is described by the
Schrödinger equation in effective atomic units

i
�

�t
� = H� = ��

i=1

f

H1�ri,t� + �
i=1

f

�
j�i

f

H2�ri,r j��� , �1�

where r= �x ,y� is the two-dimensional �2D� vector, f =4 is
the number of electrons in the present work, and the in-plane
4�2D wave function is �=��r1 , . . . ,r f ; t� � ��s1 , . . . ,s f�.
Here, � labels the spin part of the wave function with s the
spinors. The spin state � remains conserved during the di-
pole light-QD interaction investigated here. The one-electron
Hamiltonian is H1=T+V�r�+F�t� .r, with T=−�2 /2 the
kinetic-energy operator, and F�t� .r the electron-laser
interaction term in dipole approximation and in length
gauge. The finite QD parabolic confinement is
V�r�=−�0

2�rc
2−r2���rc−r� /2, where � is a step function and

�0 the confining frequency; the QD boundaries are at
rc=�xc

2+yc
2, so that V is nonzero only for r�rc �see one-

dimensional �1D� profile in inset of Fig. 1�d��. The depth of
the QD is given by Vmin=−�0

2rc
2 /2, and the number of single-

electron bound states contained in the finite QD is given by
s=Vmin /�0. The small fluctuations of V due to the host ma-
trix are neglected here, as our emphasis is on the investiga-
tion of surface effects. The two-electron Hamiltonian is
H2=1 /��r2−r1�2+a2 with the parameter a arising from the
finite thickness of the 2D QD. Effective atomic units are
used throughout the paper, which for a GaAs QD
with effective mass m=0.067 and dielectric constant
	=12.4 reads R�=9.80 nm �Bohr radius�, E�=11.85 meV
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�Hartree energy�, T�=55.55 fs �natural time�, and
F�=1.21�104 V /cm �electric field�.

Equation �1� is solved by the MCTDHF approach, which
relies on the ansatz

��r1, . . . ,r f ;t� = �
j1. . .j f=1

n

Aj1. . .j f
�t�
 j1

�x1,t� . . . 
 j f
�x f,t� ,

�2�

where xi= �ri ,si�. Both, Aj1. . .j f
�t� and 
 j�x , t� are time depen-

dent and are determined variationally. For further details, see
Refs. 10–13. The initial ground state at t=0 is obtained via
imaginary time propagation. A basis set with n=30, yielding
	3�105 configurations was found sufficient for conver-
gence. The size of the simulation boxes is 5rc and 512 points
per dimension are used. Although the number of orbitals
n=30 was kept constant in all our simulations, we would like
to note that in the weakly correlated, low-field limit n=20
would be sufficient.

The laser-driven QD dynamics is investigated as a func-
tion of the electron correlation, rs= �e2 / ��l0�� / ���0�, which
is the ratio of electron-electron interaction energy to kinetic
energy. In effective units, rs= l0, with l0=1 /��0 the radius of
the QD ground state. Correlation is varied in the range
rs=1–10R�, which covers the transition from an electron

liquid in a tightly confined QD at rs=1R� to the initial stages
of Wigner electron crystallization in a wide QD at rs=10R�.
Throughout this range, the ground state is a triplet. The
shielding parameter is a=0.1rs.

The phase transition can be visualized by looking at
the conditional probability distribution, Pc�r , t�
=
dr3
dr4����r ,r2=ra ,r3 ,r4 ; t��2, where one electron is
fixed at a position ra with a given spin. Figure 1 shows
Pc�r ,0� for three distinct QD ground states, at �a� rs=1R�,
�b� 5R�, and �c� 10R�, where the fixed ↑ electron at ra is
explicitly shown only in �c�. Whereas the remaining three
electrons are more uniformly distributed in the QD in the
liquid phase �a�, the dominant electron-electron repulsion re-
sults in crystallization and in three distinct maxima in the
solid phase �c�, while �b� presents an intermediary case. The
ground-state energies are E0=−102.2856E�, E0=−3.6445E�,
and E0=−0.8103E� for �a�, �b�, and �c�, respectively. In Fig.

1�d�, the ratio 
ee= �E0− Ē�0�� / �Ē0� is plotted as a function of

rs, where Ē0 is the bound-state energy in the noninteracting
limit. This ratio increases almost linearly with rs, as a result
of the increasing correlation and electron repulsion.

Our study focuses on the resonant dynamics, with laser
frequency �l=�0=�p, where �p is the plasmon �Kohn� fre-
quency of an infinite harmonic potential. The laser pulse,
F�t�=F0 sin��0t�f�t /�� is polarized along x̂. The envelope is
a half-cycle sin2 pulse, f =sin2��t / �nc���, which is nc=3 op-
tical cycles long; �=2� /�0 is the optical cycle and F0 the
peak field strength. The simulation is run for another cycle
after the end of the pulse, see inset of Fig. 2�c�.

III. ANALYSIS OF PLASMON SURFACE DYNAMICS

In order to isolate the effect of electron correlation on the
plasmon dynamics in a finite QD, care has to be taken with
the variation in the parameters. A change in the electron cor-
relation, rs=1 /��0, also changes the single-electron proper-
ties of the QD, which is undesirable. Therefore, to isolate the
role of correlation, both QD parameters rs and rc have to be
varied in a way that the resulting changes in the single-
electron properties of the QD are trivial. This can be
achieved by using the transformation T= t�0, �� ,��
=��0�x ,y�, and �=��0r, which renders the Schrödinger
equation for the single-electron QD into

i
d

dT
� = −

1

2
� d2

d�2 +
d2

d�2
� + V���� − �F�T�� . �3�

Here, F�T�=Fsf�2�T�sin�T�, Fs=F0 /�0
3/2, �c=��0rc, and

V= �−s+�2 /2����c−��. In our simulations, see Fig. 1, rs and
rc are changed in a way leaving the number of single-particle
eigenstates contained in the QD constant, s=�0rc

2 /2=28. As
a result, Eq. �3� becomes scaling invariant with regard to
changes in �0 �rs�, and the surface-induced decay of the
laser-driven single-electron motion is proportional to
exp�−�0T�. From a solution of the single-electron
Schrödinger Eq. �3� for various field strengths F0 we obtain
�0=0.5. Transformation back to effective units yields a de-
cay exp�−�t� with surface collision frequency �=�0�0. As a
result, the decay constant measured in units of oscillation
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FIG. 1. �Color� Ground-state conditional probability distribu-
tion, Pc�r , t=0�, for the three-electron correlation rs values consid-
ered in our work, as given by MCTDHF: rs=1R� �liquid phase, �a��,
rs=5R� �b�, and rs=10R� �solid phase, �c��; R� is the effective
atomic length unit. The limits of the plot range in each panel are
equal to the extension of the finite parabolic potential, rc, whose 1D
profile is shown in inset in �d�. The parameters rs and rc are
changed in a way leaving s=�0rc

2 /2=const. The full simulation box
is five times larger than �xc ,yc� to capture all of the electron dy-
namics. �d� shows the normalized correlation energy, 
ee, as a func-
tion of the electron correlation parameter rs. In all panels,

drPc�r , t=0�=1.
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periods is constant, ��=2��0. When the ab initio few-
electron plasmon decay follows this relation, it can be mod-
eled by an effective single-particle, uncorrelated, center-of-
mass Hamiltonian. Any deviation from this relation must be
attributed to electron correlation.

The plasmon-surface dynamics is analyzed by comparing
the ab initio results with a classical damped harmonic oscil-
lator �HO� Drude model,

ẍ = F�t� − �0
2x�t� − 2�ẋ�t� , �4�

where � is the surface collision frequency. In order to get
good agreement with the quantum results, we found that the
Drude model has to be modified for surface collisions. First,
in the strong field limit, the bound wave function is driven
over the surface which modifies the plasmon frequency
�0=�p. This is accounted for by substituting
�0

2→�0
2�1−�2�. In a more detailed model, the frequency

shift � should appear only during the times in the laser cycle
where the wave function is strongly deflected by the surface.
Second, surface dissipation does cutoff at a velocity vc, be-
low which the plasmon does not reach the surface anymore.
This is accounted for by cutting dissipation for plasmon ve-
locities v�vc. The phenomenological modifications identi-
fied here present a starting point for developing a generalized

Drude model for plasmon-surface collisions, which is be-
yond the scope of this paper. We would like to emphasize
that they are needed to obtain fair agreement with the quan-
tum result over the whole simulation range in Fig. 2. How-
ever, they are not needed to determine �, which can be ob-
tained from fitting the plasmon decay in the time interval in
which v�vc.

The time evolution of the kinetic energy in x̂ direction is
shown in Fig. 2 as determined by the MCTDHF analysis
�full�, the classical damped HO of Eq. �4� �dotted�, and the
classical undamped HO model �dashed�; �a�, �b�, and �c�
show the results for rs=1R��Fs=1.5�, rs=5R��Fs=1.375�,
and rs=10R��Fs=1.25�, respectively. The MCTDHF plas-
mon expectation values are calculated by using the part of
the wave function in the box circumscribing the QD; as for
some of the parameters substantial ionization takes place, the
total wave function has to be split into a plasmonic, bound
part and an ionized part.

The main result obtained from the Drude model fit is the
relation for the collision frequency, �=�0 /2=1 / �2rs

2�, see
inset of Fig. 2�a�. We have performed many more calcula-
tions in the parameter range rs=1–10R� and Fs=0.5–1.5. In
the whole range, � is independent of Fs. The �0 dependence
of � is identical with the scaling in the single-electron limit,
derived above. As a result, the influence of correlation on the
surface-induced plasmon decay is negligible. In terms of the
energy spectrum, surface dissipation comes from a coupling
between plasmon and highly excited electronic states, close
to the continuum threshold.

In Fig. 2 the highest field dynamics are displayed, to dem-
onstrate that the Drude model works well even in the non-
perturbative limit, where substantial ionization takes place,
see Fig. 4. All fits, in the whole simulation range defined
above, show an agreement comparable to or better than the
ones in Fig. 2. At weaker fields, not shown here, where the
interaction with the surface is negligible, the classical un-
damped model reproduces exactly the MCTDHF result, in
agreement with the Kohn theorem.

Besides dephasing the plasmonic motion, the surface also
modifies the energy absorption process. In Fig. 3 the total
energy absorbed during the QD-laser interaction,
Eabs=
0

4�dt��i=1
f Fi�t�����t���vi���t���, is plotted versus Fs.

Integration is again performed over the box circumscribing
the QD. In the classical analysis ���t���vi���t��� is replaced
by ẋi�t� from Eq. �4�. We have plotted Eabs / �E0�, the absorbed
energy over the ground-state binding energy, for rs=1R�,
5R�, and 10R�.

Figure 3 shows that even at high Fs values, the influence
of the surface is weak and energy absorption is always domi-
nated by the plasmon resonance. As a result, both, plasmon
dissipation and energy absorption in the presence of a sur-
face do not depend on electron correlation. Note that the
highest Fs values used here at each rs are the highest values
that can be applied to the neutral QD; as ionization of the
first electron is already substantial, higher values of Fs would
lead to its complete ionization, see Fig. 4.

IV. PLASMON-ASSISTED SINGLE AND DOUBLE
IONIZATION

Plasmon-assisted ionization can be understood in terms of
a simple picture. The ionization potential of the weakest
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FIG. 2. �Color online� Time evolution of the kinetic energy,
vx

2 /2, in the x̂ direction of the external pulse F�t�, for each electron
correlation �rs� value considered in Fig. 1 as a function of optical
cycles �t /��. The plots are for the highest �normalized field� Fs

values used in our simulation. In all panels, dashed, solid, and dot-
ted lines, respectively, stand for undamped HO, MCTDHF, and
damped HO results. The simulation time extends over the three-
cycle pulse plus an extra cycle, as shown in inset in �c�; � is the
laser oscillation period. Inset in �a� shows the collision frequency �
as a function of rs. The Drude model parameters vc and � �see text�
depend smoothly on rs and weakly on Fs. We use
vc	5.0,0.85,0.38, and �	0.005,0.01,0.015, for rs=1R�, 5R�,
and 10R�, respectively.
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bound electron is given by Ip, which denotes the energy re-
quired to remove it from the QD. As the plasmon dynamics
is a collective effect, each of the electrons carries on average
the same amount of energy, Eabs /4. When Eabs /4= Ip, the
weakest bound electron has absorbed sufficient energy to
leave the QD by above barrier ionization. Around the onset
of above barrier ionziation the probability of ionization of
the weakest bound electron approaches unity and ionization
saturates.

This picture is quantitatively corroborated by Fig. 4�a�,
where the one-electron ionization probability, I1e, is shown
versus Fs. The values of Ip are 24.66E�, 0.76E�, and 0.14E�

for rs=1R�, 5R�, and 10R�, respectively. Using Fig. 3 we find
the Fs values at which Eabs /4= Ip to be, respectively, 1.49,
1.32, and 1.14. At these Fs values, close to 50% of the first
electron has been ionized, i.e., ionization is starting to satu-
rate, in agreement with the picture developed above. These
Fs values present the saturation field strengths for one-
electron ionization, which is the ultimate field strength the
�neutral� QD can be exposed to.

As the plasmon oscillation is a collective motion and the
gained energy is shared between the electrons, not only the
ionization of the first electron is accelerated but also corre-
lated tunnel ionization of two or more electrons can take
place. The ratio of one-electron to two-electron ionization
probability, I2e / I1e, is shown in Fig. 4�b�. Whereas at small
Fs this ratio is small, I2e / I1e�0.25 becomes substantial for
the highest Fs values at each correlation rs.

V. CONCLUSION

An ab initio analysis of a laser-driven plasmon in a finite
lateral quantum dot was performed for the special case of
four electrons. The correlation of the electrons was tuned
from the weakly correlated with strongly correlated limit of
Wigner crystallization. We have found that the influence of
correlation on the surface-induced plasmon decay is negli-
gible. This suggests that the Kohn theorem—plasmon dy-
namics in infinite parabolic quantum dots does not depend on
electron correlation—is extendable to finite quantum dots,
which will have to be corroborated by calculations with a
larger number of electrons.
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